Bis-5-alkylresorcinols from Panopsis rubescens that Inhibit DNA Polymerase β

J ing-Zhen Deng, Shelley R. Starck, and Sidney M. Hecht*
Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901

Received November 18, 1998

Bioassay-guided fractionation of Panopsis rubescens, using an assay to detect DNA polymerase β inhibition, led to the isolation of two new bis-5-alkylresorcinols (1 and 2), in addition to oneknown bis-5-alkylresorcinol (3). The structures of 1-3 were established as 1,3-dihydroxy-5-[14'-(3", $5^{\prime \prime}$-dihydroxyphenyl)-cis-4'tetradecenyl] benzene (1), 1,3-di hydroxy-5-[14'-(3",5"-dihydroxyphenyl)-cis-7'-tetradecenyl]benzene (2), and 1,3-di hydroxy-5-[14'-(3", $5^{\prime \prime}$-di hydroxyphenyl)tetradecenyl]benzene (3), respectively, by spectroscopic and chemical analyses. Compounds 1-3 exhibited potent inhibition of calf thymus DNA polymerase β, with IC_{50} values of $7.5,6.5$, and $5.8 \mu \mathrm{M}$, respectively.

Cellular DNA defense mechanisms exist to repair the DNA damage resulting from exogenous sources, including chemotherapeutic agents. This effect has been shown to reduce the potency of and promote resistance to DNAdamaging agents. ${ }^{1}$ DNA polymerase β, one of the five known eukaryotic DNA polymerases, is believed to be responsible for repairing DNA damage after exposure to some anticancer drugs such as bleomycin and pepleomycin, ${ }^{2}$ monofunctional DNA alkylating agents, ${ }^{3}$ cisplatin, ${ }^{4}$ and neocarzinostatin. ${ }^{5}$ A recent study using isolated DNA polymerase β inhibitors demonstrated that inhibition of the enzyme was correlated with potentiation of bleomycin and cisplatin activity. ${ }^{6}$ Although a few DNA polymerase β inhibitors have been reported, including the nucleotide dideoxy TTP, ${ }^{7}$ sulfate- or sialic acid-containing glycolipids, ${ }^{8}$ phospholipids, ${ }^{9}$ flavonoids, ${ }^{10}$ triterpenoids, ${ }^{11}$ fatty acids, and fatty acid derivatives, ${ }^{12}$ the search for more potent DNA polymerase β inhibitors is essential to secure agents that can be used to validate polymerase β as a therapeutically relevant antitumor target and potentially be employed for combination chemotherapy with DNA-damaging agents.

Some naturally occurring phenolic and catecholic principles ${ }^{13}$ exhibit potent biological activities, ${ }^{14,15}$ such as the skin-sensitization properties of poison oak and poison ivy, as well as antiviral activity and cytotoxic activity against human prostate cancer. 1,3-Dihydroxy-5-alkylbenzenes, known as resorcinols, occur naturally in the Proteaceae, Anacardiaceae, Myristicaceae, Ginkogoaceae, and Graminae families and show a wide variety of biological and biochemical activities, including fungicidal and bacteriocidal activities against pathogens ${ }^{16}$ and DNA cleavage. ${ }^{17}$ In our survey of crude plant extracts for DNA polymerase β inhibitors, ${ }^{18}$ a methyl ethyl ketone extract of Panopsis rubescens (Pohl) Pittier det. S. McDaniel (Proteaceae) exhibited potent inhibition of DNA polymerase β (81% and 77% inhibition at 100 and $50 \mu \mathrm{~g} / \mathrm{mL}$, respectively). To date, there has been no report describing the chemical constituents of this plant. To permit isolation of the inhibitory principles, the crude extract was subjected to bioassayguided fractionation using an assay sensitive to DNA polymerase β inhibition. Bioassay-guided fractionation of the methyl ethyl ketone extract of P. rubescens led to the isolation of three bis-5-alkylresorcinols, two of which have not been described previously. All three were found to be potent inhibitors of DNA polymerase β. Presently, we report the isolation and structure elucidation of these three bioactive principles, as well as their potency of inhibition of DNA polymerase β.

Results and Discussion

Dried twigs from P. rubescens were soaked successively with hexanes, methyl ethyl ketone, methanol, and water. The methyl ethyl ketone extract was found to inhibit polymerase β and was fractionated initially on a polyamide 6 S column, which was washed successively with $\mathrm{H}_{2} \mathrm{O}, 1: 1$ $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 8: 2 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{1}: 1 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 9:1 $\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$ (Table 1). The final eluate contained polyphenols, which tend to be strong, albeit nonspecific, inhibitors of DNA polymerase β. Theinhibitory 8:2 MeOH $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction (93% inhibition of DNA polymerase β at $100 \mu \mathrm{~g} / \mathrm{mL}$; 88\% inhibition at $50 \mu \mathrm{~g} / \mathrm{mL}$) was applied to a Sephadex LH-20 column and was subjected to a normalphase elution scheme. The 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone fraction from the Sephadex LH-20 column exhibited the strongest DNA polymerase β inhibitory activity and was fractionated further using a reversed-phase C_{18} open column. Three inhibitory fractions, including two 1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}$ fractions and one 1:15:5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ fraction, were combined and fractionated further using a reversed-phase C_{8} open column. The 1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ fraction showed the most potent inhibitory activity against DNA polymerase β and was purified further using a C_{18} reversed-phase HPLC column to afford active compounds 1-3.

Table 1. DNA Polymerase β Inhibition Data from Bioassay-guided Fractionation of a Methyl Ethyl Ketone Crude Extract of Panopsis rubescens (Percent Inhibition of Polymerase β)

column	\% inhibition	
crude extract	$81^{\text {a }}$	$77^{\text {b }}$
Polyamide 6S		
8:2 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$93^{\text {a }}$	$88^{\text {b }}$
Sephadex LH-20		
1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone	$93^{\text {a }}$	$90^{\text {b }}$
C_{18} reversed phase		
1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	$95^{\text {a }}$	$85^{\text {b }}$
C_{8} reversed phase		
1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$	$92^{\text {b }}$	77c
$\mathrm{HPLC}\left(\mathrm{C}_{18}\right)$		
fraction 1 (1)	$98{ }^{\text {b }}$	$51^{\text {c }}$
fraction 2 (2)	$92^{\text {b }}$	44^{c}
fraction 3 (3)	$79^{\text {b }}$	$50^{\text {c }}$

${ }^{\text {a }} 100 \mu \mathrm{~g} / \mathrm{mL}$. ${ }^{\mathrm{b}} 50 \mu \mathrm{~g} / \mathrm{mL} .{ }^{\mathrm{c}} 10 \mu \mathrm{~g} / \mathrm{mL}$.
Compounds $\mathbf{1}$ and $\mathbf{2}$ were obtained as col orless sol ids and compound $\mathbf{3}$ as col orless microcrystals. Thehigh-resolution fast-atom bombardment mass spectra (FABMS) of 1 and 2 indicated that both had the same molecular formula $\left(\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4}\right)$. Compound $\mathbf{1}$ had an ${ }^{1} \mathrm{H}$ NMR spectrum with resonances at $\delta 1.20(12 \mathrm{H}, \mathrm{m}), 1.65(4 \mathrm{H}, \mathrm{m}), 1.97(4 \mathrm{H}, \mathrm{m})$, $2.40(4 \mathrm{H}, \mathrm{m}), 5.30(2 \mathrm{H}, \mathrm{qn}, \mathrm{J}=9.0,4.5 \mathrm{~Hz}), 6.05(2 \mathrm{H}, \mathrm{br}$ s), and $6.15(4 \mathrm{H}, \mathrm{br} \mathrm{s})$; the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ was quite similar. The ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ indicated the presence of aromatic, oxygen-substituted aromatic, olefinic, and alkane carbons. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, as well as the MS data, suggested that $\mathbf{1}$ and $\mathbf{2}$ were bis-5-alkylresorcinol derivatives with a double bond in the alkane chain. ${ }^{17 a}$ The configurations of the double bonds were determined from the coupling constants between the olefinic protons and by the chemical shifts for vinylic carbons. ${ }^{19}$ The two olefinic proton signals for $\mathrm{H}-4^{\prime}$ and $\mathrm{H}-5^{\prime}$ at $\delta 5.30$ appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 as a quintet because their chemical shift values were quite close; the coupling value measured, J $4^{\prime}, 5^{\prime}=9.0 \mathrm{~Hz}$, indicated a Z geometry in 1. The Z configuration was confirmed by the chemical shifts of $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-6^{\prime}$ at $\delta 26.73$ and 26.45, respectively, compared with the corresponding chemical shifts of $\delta 31-34$ that would be expected for the corresponding E configuration. ${ }^{19}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 had a signal for the olefinic protons at $\delta 5.32$ as a triplet (J = 4.5 Hz) resulting from coupling with the allylic protons; no coupl ing between the ol efinic protons was observed. This implied a possible symmetric structure for 2. The Z geometry of the double bond in 2 was subsequently established on the basis of the chemical shift at $\delta 26.83$ for the allylic carbons C-6' and C-9'. ${ }^{19,20}$ The MS of $\mathbf{1}$ and 2 indicated that both had the same molecular weight (412), suggesting that the alkene must have a chain length of 14 carbon atoms. However, the exact positions of the double bonds could not be determined on the basis of the NMR data. The positions were established through ozonolysis of the respective tetra-O-acetates, followed by analysis of chemical ionization mass spectra (CIMS) of the crude aldehydic product mixtures. ${ }^{21}$

Acetylation of $\mathbf{1}$ and $\mathbf{2}$, followed by ozonolysis in CS_{2} at $-78^{\circ} \mathrm{C}$, afforded the crude aldehydic product mixtures from 1 and $\mathbf{2}$. These mixtures were subjected directly to CIMS analysis (Scheme 1). The CIMS of the reaction mixture derived from 1 showed two strong pseudomolecular ion peaks at m/z 349 (attributed to 1b) and 265 (1a) for al dehydes having M_{r} values of 348 and 264, indi cating that oxidative cleavage had occurred between carbon atoms 4'

Scheme 1. Chemical Ionization Mass Spectroscopic Analysis of the Ozonolysis Products of Tetra-O-acetates of $\mathbf{1}$ and $\mathbf{2}$

Table 2. IC_{50} Values for Bis-5-alkylresorcinols from Panopsis rubescens

compound	$\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{1}$	7.5
$\mathbf{2}$	6.5
$\mathbf{3}$	5.8

and 5^{\prime} of the 14-carbon chain. Therefore, the structure of 1 was establ ished as 1,3-dihydroxy-5-[14'-(3",5"-dihydrox-yphenyl)-cis-4'-tetradecenyl] benzene. Subsequently, a single strong pseudomolecular ion peak was observed at m/z 307 (2a) in the CIMS of the reaction mixture derived from 2 for the formed aldehyde, corresponding to $M_{r} 306$. This indicated that the olefin in $\mathbf{2}$ was located between carbons 7 ' and 8^{\prime} in the 14-carbon chain, consistent with the observation of a single aldehyde for this symmetric compound. Therefore, the structure of 2 was established as 1,3-dihydroxy-5-[14'-(3",5"-dihydroxyphenyl)-ci s-7'-tetradecenyl]benzene. Compounds $\mathbf{1}$ and $\mathbf{2}$ are new bis-5-alkylresorcinol derivatives.
The high-resolution FABMS of $\mathbf{3}$ provided the molecular formula $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{4}$, which indicated the presence of two more hydrogen atoms in $\mathbf{3}$ than in $\mathbf{1}$ or $\mathbf{2}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ was quite similar to those of $\mathbf{1}$ and $\mathbf{2}$, with the exception that no olefinic proton signal (at $\sim \delta 5.30$) nor allylic proton signal (at $\sim \delta 2.40$) was present. This indicated that $\mathbf{3}$ was simply the saturated analogue of $\mathbf{1}$ and $\mathbf{2}$. Therefore, the structure of $\mathbf{3}$ was established as 1,3di hydroxy-5-[14'-(3",5"-dihydroxyphenyl)tetradecenyl]benzene, a natural product that has been reported previously. ${ }^{17}$
The first step in the bioassay-guided fractionation employed a polyamide 6 S column. This was used to separate polyphenols, which would likely bind indiscriminately to cellular constituents instead of selectively inhibiting polymerase β. A C_{18} reversed-phase HPLC column was employed successfully for the separation of the structurally similar and air-sensitive bis-5-alkylresorcinols 1, 2, and 3.
Compounds 1-3 displayed potent inhibitory activity against rat DNA polymerase β; their IC_{50} values were 7.5, 6.5 , and $5.8 \mu \mathrm{M}$, respectively (Table 2), in the presence of bovine serum albumin (BSA), as determined under the assay conditions described in the Experimental Section. It is interesting that, unlike many of the polymerase β inhibitors reported to date, ${ }^{9,11,12,18}$ compounds 1-3 lack any carboxylate functionality.

In regard to their biological activities, this is the first report in which alkylresorcinols have been shown to inhibit a mammalian DNA polymerase β; to our knowledge they exhibit the strongest inhibition of any of the reported naturally occurring DNA polymerase β inhibitors. F urther, it is interesting that these alkylresorcinols both cleave DNA ${ }^{17}$ and inhibit the repair of DNA damage by polymerase β. It seems plausible that these two activities could function synergistically to potentiate the destruction of cancer cells.

Experimental Section

General Experimental Procedures. Polyamide 6S (a product of Riedel-de Haen, Germany) was obtained from Crescent Chemi cal Co. Lipophilic Sephadex LH-20 (Pharmacia; $40 \mu \mathrm{~m}$) was purchased from Sigma Chemicals. Silica RP C_{8} and RP $\mathrm{C}_{18}(32-60 \mu \mathrm{~m})$ chromatographic supports were obtained from ICN Biomedical Research Products. A Kromasil C_{18} column ($250 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) for HPLC was obtained from Higgins Analytical Inc. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on GN-300 or QE-300 NMR spectrometers. Low-resolution chemical ionization (CI) and electron-impact (EI) mass spectra were recorded on a Finnigan MAT 4600 mass spectrometer. High-resolution mass spectra were taken on a VG ZAB-SE mass spectrometer. Unlabeled dNTPs and calf thymus DNA were purchased from Sigma Chemicals; [3H]TTP was from ICN Pharmaceuticals. DEAE - cellulose paper (DE-81) was purchased from Whatman.

Plant Material. Twigs of P. rubescens were collected in Peru in April 1976 in inudated shoreline forest along Rio Nancy from Bellavista to Quebrada de Morropon. Voucher specimen Rimachi 2211 is preserved at the Institute for Botanical Exploration, Mississippi State University.

Extraction and Isolation. The dried plant material was soaked successively with hexanes, methyl ethyl ketone, methanol, and water. The methyl ethyl ketone extract showed significant inhibition of DNA polymerase $\beta(81 \%$ inhibition at $100 \mu \mathrm{~g} / \mathrm{mL}$). Since the crude extract continued to show significant activity (93% inhibition at $100 \mu \mathrm{~g} / \mathrm{mL}$) after passage through a polyamide 6 column, it was chosen for further bioassay-guided fractionation. In a typical experiment, a $15-\mathrm{g}$ polyamide 6S column was loaded with 382 mg of the crude extract. The column was washed successively with $\mathrm{H}_{2} \mathrm{O}, 1: 1$ $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 8: 2 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 1 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 9:1 $\mathrm{MeOH}-\mathrm{NH}_{4} \mathrm{OH}$ (200-mL fractions). The 8:2 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction (189 mg) exhibited significant inhibition of DNA polymerase β (93% inhibition at $100 \mu \mathrm{~g} / \mathrm{mL}$) and was fractionated further on a 20-g Sephadex LH-20 column, which was washed successively with hexane, $1: 1$ hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CH}_{2-}$ $\mathrm{Cl}_{2}, 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone, acetone, and MeOH ($300-\mathrm{mL}$ fractions). The 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone fraction (containing 60 mg of product) was the most active and was applied to a $15-\mathrm{g}_{18}$ column. This column was washed with water, then with increasing amounts of methanol in water, and finally with a ternary system (initially 1:11:8 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) to which increasing proportions of MeOH were added. The most active fractions, containing a total of 24 mg of material, eluted primarily with 1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ and were combined and applied to an $8-\mathrm{g} \mathrm{C}_{8}$ column that employed an elution scheme similar to the C_{18} col umn described above. The most active fraction (12 mg ; 92% inhibition at $50 \mu \mathrm{~g} / \mathrm{mL}$) eluted with 1:13:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ and was fractionated on a $5 \mu \mathrm{~m}$ C_{18} reversed-phase HPLC column ($250 \times 10 \mathrm{~mm}$), which was washed with a linear gradient of $4: 1 \rightarrow 19: 1 \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ over a period of 50 min at a flow rate of $4.0 \mathrm{~mL} / \mathrm{min}$ (monitoring at 280 nm), affording pure compounds $\mathbf{1 - 3}$ in order of elution from this column.

Compound 1: colorless solid; $5.2 \mathrm{mg} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ $\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.21(12 \mathrm{H}, \mathrm{m}), 1.65(4 \mathrm{H}, \mathrm{m}), 1.97(4 \mathrm{H}$, $\mathrm{m}), 2.40(4 \mathrm{H}, \mathrm{m}), 5.30(2 \mathrm{H}, \mathrm{qn}, \mathrm{J}=9.0,4.5 \mathrm{~Hz}), 6.06(2 \mathrm{H}, \mathrm{br}$ s), $6.15(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 26.45$, 26.73 (C-3', C-6'), 28.75, 28.83, 29.00, 29.05, 29.17, 29.20 (C-
$\left.7^{\prime}, \mathrm{C}-8^{\prime}, \mathrm{C}-9^{\prime}, \mathrm{C}-10^{\prime}, \mathrm{C}-11^{\prime}, \mathrm{C}-12^{\prime}\right), 30.69,30.73$ (C-2', C-13'), 35.11, 35.51 (C-1', C-14'), 99.37, 99.45 (C-2, C-4"), 106.71, 106.79 (C-4, C-6, C-2", C-6"), 128.89, 129.97 (C-4', C-5'), 144.91, 145.28 (C-5, C-1"), 156.97, 157.00 (C-1, C-3, C-3', C-5"); HRFABMS m/z 413.2689 $[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{4}$, 413.2692).

Compound 2: colorless solid; $1.2 \mathrm{mg} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+$ $\left.\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.20(12 \mathrm{H}, \mathrm{m}), 1.66(4 \mathrm{H}, \mathrm{m}), 1.98(4 \mathrm{H}$, $\mathrm{m}), 2.41(4 \mathrm{H}, \mathrm{m}), 5.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}), 6.05(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.14$ $(4 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right) \delta 26.83\left(\mathrm{C}-6^{\prime}\right.$, C-9'), 28.88, 29.26, 29.29 (C-3', C-4', C-5'), 30.78 (C-2', C-13'), 35.67 (C-1', C-14'), 99.52 (C-2, C-4"), 106.66 (C-4, C-6, C-2", C-6"), 128.98 (C-7', C-8'), 145.35 (C-5, C-1"), 157.01 (C-1, C-3', C-5"); HRFABMS m/z 413.2698 [M + H] ${ }^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{O}_{4}$, 413.2692).

Compound 3: colorless microcrystals; $2.9 \mathrm{mg} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right) \delta 1.18(20 \mathrm{H}, \mathrm{m}), 1.45(4 \mathrm{H}, \mathrm{m})$, $1.66(4 \mathrm{H}, \mathrm{m}), 2.38(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}), 6.05(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, and 6.14 ($4 \mathrm{H}, \mathrm{br} \mathrm{s}$); HRFABMS m/z 415.2842 [$\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{O}_{4}, 415.2848$).

Acetylation of $\mathbf{1}$. To a cooled $\left(0-5{ }^{\circ} \mathrm{C}\right)$ solution of 1.2 mg ($3.5 \mu \mathrm{~mol}$) of $\mathbf{1}$ in $500 \mu \mathrm{~L}$ of dry pyridine was added dropwise $200 \mu \mathrm{~L}$ ($216 \mathrm{mg}, 2.1 \mathrm{mmol}$) of acetic anhydride dropwise under argon. The reaction mixture was stirred under argon at $25^{\circ} \mathrm{C}$ for 2.5 h , followed by the addition of an ice chip and subsequent extraction with CHCl_{3}. The chloroform layer was washed with water, dried over MgSO_{4}, and concentrated under diminished pressure to afford the tetra-O-acetate of $\mathbf{1}$ as an oily product: yield $1.4 \mathrm{mg}(83 \%)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta 1.25(12 \mathrm{H}$, $\mathrm{m}), 1.60(4 \mathrm{H}, \mathrm{m}), 2.02(4 \mathrm{H}, \mathrm{m}), 2.23(12 \mathrm{H}, \mathrm{s}), 2.41(4 \mathrm{H}, \mathrm{m})$, $5.38(2 \mathrm{H}, \mathrm{m}), 6.67(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $6.79(4 \mathrm{H}, \mathrm{br} \mathrm{s})$; positive ion CIMS m/z $581[\mathrm{M}+\mathrm{H}]^{+}$.

Acetylation of 2. To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 0.5 mg (1.4 $\mu \mathrm{mol}$) of $\mathbf{2}$ in $500 \mu \mathrm{~L}$ of dry pyridine was added $200 \mu \mathrm{~L}$ (216 $\mathrm{mg}, 2.1 \mathrm{mmol}$) of acetic anhydride under argon. The reaction mixture was stirred under argon at $25{ }^{\circ} \mathrm{C}$ for 2.5 h , followed by the addition of an ice chip and subsequent extraction with CHCl_{3}. The chloroform layer was washed with water, dried over MgSO_{4}, and concentrated under diminished pressure to afford the tetra-O-acetate of $\mathbf{2}$ as an oily product: yield 0.6 mg (82%); ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 300 \mathrm{MHz}$), $\delta 1.23$ ($12 \mathrm{H}, \mathrm{m}$), 1.58 $(4 \mathrm{H}, \mathrm{m}), 2.01(4 \mathrm{H}, \mathrm{m}), 2.22(12 \mathrm{H}, \mathrm{s}), 2.39(4 \mathrm{H}, \mathrm{m}), 5.39(2 \mathrm{H}, \mathrm{t}$, $\mathrm{J}=4.5 \mathrm{~Hz}), 6.68(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.80(4 \mathrm{H}, \mathrm{br} \mathrm{s})$; positive CIMS m/z $581[\mathrm{M}+\mathrm{H}]^{+}$.

Ozonolysis of the Tetra-O-acetate of 1. A cooled (-78 ${ }^{\circ} \mathrm{C}$) solution containing $1.4 \mathrm{mg}(3.2 \mu \mathrm{~mol})$ of $\mathbf{1}$ in $230 \mu \mathrm{~L}$ of CS_{2} was saturated with O_{3}. Excess O_{3} was removed with a stream of argon followed by treatment with $1.0 \mathrm{mg}(3.8 \mu \mathrm{~mol})$ of solid triphenylphosphine. The reaction mixture was allowed to warm to room temperature and was subjected to Cl mass spectrometric analysis directly: positive ion CIMS m/z 349 [M $+\mathrm{H}]^{+}$and $265[\mathrm{M}+\mathrm{H}]^{+}$.

Ozonolysis of the Tetra-O-acetate of 2. A cooled (-78 ${ }^{\circ} \mathrm{C}$) sol ution containing $0.6 \mathrm{mg}(1.4 \mu \mathrm{~mol})$ of $\mathbf{2}$ in $230 \mu \mathrm{~L}$ of CS_{2} was saturated with O_{3}. Excess O_{3} was removed with a stream of argon fol lowed by treatment with $1.0 \mathrm{mg}(3.8 \mu \mathrm{~mol})$ of solid triphenylphosphine. The reaction mixture was allowed to warm to room temperature and was subjected to Cl mass spectrometric analysis directly: positive ion CIMS m/z 307 [M $+\mathrm{H}]^{+}$.

DNA Polymerase $\boldsymbol{\beta}$ Inhibition Assay. The standard reaction mixture for DNA polymerase β contained 62.5 mM 2-amino-2-methyl-1,3-propanediol buffer, $\mathrm{pH} 8.6,10 \mathrm{mM}$ $\mathrm{MgCl}_{2}, 1 \mathrm{mM}$ DTT, $0.1 \mathrm{mg} / \mathrm{mL}$ bovine serum albumin, 6.25 $\mu \mathrm{M}$ dNTPs, $\left.{ }^{3} \mathrm{H}\right]$ TTP ($0.04 \mathrm{Ci} / \mathrm{mmol}$), and $0.25 \mathrm{mg} / \mathrm{mL}$ of activated calf thymus DNA. After dissolving the crude extract samples or fractions in 50% DMSO $-\mathrm{MeOH}, 6 \mu \mathrm{~L}$ of the sample and $4 \mu \mathrm{~L}$ of rat DNA polymerase $\beta^{6,22}$ (6.9 units, 48000 units/ mg) were added to $50 \mu \mathrm{~L}$ of the standard reaction mixture; incubation was carried out at at $37{ }^{\circ} \mathrm{C}$ for 60 min . The radioactive DNA product was collected on DEAE-cellulose paper (DE-81), dried, and washed successively with $0.4 \mathrm{M} \mathrm{K}_{2-}$ $\mathrm{HPO}_{4}, \mathrm{pH} 9.4$, and 95% ethanol. Radioactivity was measured using a liquid scintillation counter.

Acknowledgment. We thank Dr. Li-Kai Wang for the DNA polymerase β preparation employed in this work. This work was supported by Research Grant CA50771 from the National Cancer Institute.

References and Notes

(1) Chaney, S. G.; Sancar, A. J . Nat. Cancer Inst. 1996, 88, 1346-1360.
(2) (a) Seki, S.; Oda, T. Carcinogenesis 1986, 7, 77-82. (b) Seki, S.; Oda, T. Carcinogenesis 1988, 9, 2239-2244. (c) DiGiuseppe, J. A.; Dresler, S. L. Biochemistry 1989, 28, 9515-9520. (d) Park, I.-L.; K oh, H. Y.; Park, J. K.; Par, S. D. Biochem. Biophys. Res. Commun. 1989, 164, 1226-1233. (e) Zhang, B.; Seki, S.; Ikeda, S. Int. J. Biochem. 1991, 23, 703-711.
(3) (a) Sorbol, R. W.; Horton, J. K.; Kühn, R.; Gu, H.; Singhal, R. K.; Prasad, R.; Rajewsky, K.; Wilson, S. H. Nature 1996, 379, 183-186. (b) Narayan, S.; He, F.; Wilson, S. H. J. Biol. Chem. 1996, 271, 18508-18513. (c) Ogawa, A.; Murate, T.; Izuta, S.; Takemura, M.; F uruta, K.; K obayashi, J.; Kamikawa, T.; Nimura, Y.; Y oshida, S. Int. J. Cancer 1998, 76, 512-518.
(4) (a) Ali-Osman, F.; Berger, M. S.; Rairkar, A.; Stein, D. E. J. Cell. Biochem. 1994, 54, 11-19. (b) H offman, J.-S.; Pillaire, M.-J.; Maga, G.; Podust, V.; Hübscher, U.; Villani, G. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 5356-5360. (c) Horton, J. K.; Srivastava, D. K.; Zmudzka, B. Z.; Wilson, S. H. Nucleic Acids Res. 1995, 23, 3810-3815.
(5) Miller, M. R.; Chinault, D. N.J. Biol. Chem. 1982, 257, 10204-10209.
(6) Snow, A. M. Characterization of the Cellular Loci of BleomycinMediated Damage. Ph.D. Thesis, University of Virginia, Charlottesville, VA, 1995.
(7) Izuta, S.; Saneyoshi, M.; Sakurai, T.; Suzuki, M.; K ojima, K.; Y oshida, S. Biochem. Biophys. Res. Commun. 1991, 179, 776-783.
(8) Simbulan, C. M. G.; Taki, T.; K oizumi, K. T.; Suzuki, M.; Savoysky, E.; Shoji, M.; Y oshida, S. Biochim. Biophys. Acta 1994, 1205, 68-74.
(9) (a) Murofushi, K. M.; Shiota, M.; Kaji, K.; Y oshida, S.; Murofushi, H. J. Biol. Chem. 1992, 267, 21512-21517. (b) Murofushi, K. M.; Kobayashi, S.; Onumura, K.; Matsumoto, M.; Shiota, M.; Shoji, M.; Murofushi, H. Biochim. Biophys. Acta 1995, 1258, 57-60.
(10) Ono, K.; Nakane, H.; Fukushima, M. Eur. J. Biochem. 1988, 172, 349-353.
(11) Tanaka, N.; Kitamura, A.; Mizushina, Y.; Sugawara, F.; Sakaguchi, K. J. Nat. Prod. 1998, 61, 193-197.
(12) (a) Mizushina, Y.; Yagi, H.; Tanaka, N.; Kurosawa, T.; Seto, H.; K atsumi, K.; Onoue, M.; Iseki, A.; Nara, T.; M orohashi, K.; Horie, T.; Onomura, Y.; Narusawa, M.; Aoyagi, N.; Takami, K.; Yamaoka,
M.; Inoue, Y.; Matsukaga, A.; Y oshida, S.; Sakaguchi, K. J. Antibiot. 1996, 49, 491-492. (b) Mizushina, Y.; Tanaka, N.; Yagi, H.; Kurosawa, T.; Onoue, M.; Seto, H.; Horie, T.; Aoyagi, N.; Yamaoka, M.; Matsukaga, A.; Yoshida, S.; Sakaguchi, K. Biochim. Biophys. Acta 1996, 1308, 256-262. (c) Mizushina, Y.; Y oshida, S.; Matsukaga, A.; Sakaguchi, K. Biochim. Biophys. Acta 1997, 1336, 509-521. (d) Ishiyama, H.; Ishibashi, M.; Ogawa, A.; Y oshida, S.; K obayashi, J . J . Org. Chem. 1997, 62, 3831-3836.
(13) (a) Occolowitz, J. L.; Wright, A. S. Aust. J. Chem. 1962, 15, 858861. (b) Cannon, J. R.; Chow, P. W.; Metcalf, B. W.; Power, A. J. Tetrahedron Lett. 1970, 325-328. (c) Cannon, J. R.; Metcalf, B. W. Aust. J. Chem. 1971, 24, 1925-1930. (d) Cannon, J. R.; Chow, P. W.; Fuller, M. W.; Hamilton, B. H.; Metcalf, B. W.; Power, A. J. Aust. J . Chem. 1973, 26, 2257-2275.
(14) (a) Corbett, M. D.; Billets, S. J. Pharm. Sci. 1975, 64, 1715-1718. (b) Gross, M.; Baer, H.; F ales, H. M. Phytochemistry 1975, 14, 22632266. (c) Liberato, D. J .; Byers, V. S.; Dennick, R. G.; Castagnoli, N., J r. J. Med. Chem. 1981, 24, 28-33.
(15) David, J. M.; Chavez, J. P.; Chai, H.-B.; Pezzuto, J. M.; Cordell, G. A. J. Nat. Prod. 1998, 61, 287-289.
(16) Lindenbury, B. A.; Massin, M. J. J. Physiol. (Paris) 1957, 49, 285287.
(17) (a) Lytollis, W.; Scannell, R. T.; An, H.; Murty, V. S.; Reddy, K. S.; Barr, J. R.; Hecht, S. M. J. Am. Chem. Soc. 1995, 117, 12683-12960. (b) Singh, U. S.; Scannell, R. T.; An, H.; Carter, B. J .; Hecht, S. M. J . Am. Chem. Soc. 1995, 117, 12691-12699.
(18) Chen, J.; Zhang, Y.-H.; Wang, L.-K.; Sucheck, S. J.; Snow, A. M.; Hecht, S. M. J. Chem. Soc., Chem. Commun. 1998, 2769-2770.
(19) (a) Gonzalez, M. J. T. G.; Pinto, M. M. M.; Kijjoa, A.; Anantachoke, C.; Herz, W. Phytochemistry 1993, 32, 433-438. (b) Gonzalez, M. J . T. G.; DeOliveira, C. J. C.; Fernandes, J. O.; Kijjoa, A.; Herz, W. Phytochemistry 1996, 43, 1333-1337.
(20) deHaan, J. W.; van de Ven, L. J. M. Org. Magn. Reson. 1973, 5, 147153.
(21) Barr, J. R.; Scannell, R. T.; Yamaguchi, K. J. Org. Chem. 1989, 54, 494-496.
(22) (a) Abbots, J.; SenGupta, D. N.; Zmudzka, B.; Widen, S. G.; Notario, V.; Wilson, S. H. Biochemistry 1988, 22, 901-909. (b) Date, T.; Yamaguchi, M.; Hirose, F.; Nishimoto, Y.; Tanihara, K.; Matsukage, A. Biochemistry 1988, 27, 2983-2990.

NP980522G

